4 research outputs found

    Development of a spatial data infrastructure for precision agriculture applications

    Get PDF
    Precision agriculture (PA) is the technical answer to tackling heterogeneous conditions in a field. It works through site specific operations on a small scale and is driven by data. The objective is an optimized agricultural field application that is adaptable to local needs. The needs differ within a task by spatial conditions. A field, as a homogenous-planted unit, exceeds by its size the scale units of different landscape ecological properties, like soil type, slope, moisture content, solar radiation etc. Various PA-sensors sample data of the heterogeneous conditions in a field. PA-software and Farm Management Information Systems (FMIS) transfer the data into status information or application instructions, which are optimized for the local conditions. The starting point of the research was the determination that the process of PA was only being used in individual environments without exchange between different users and to other domains. Data have been sampled regarding specific operations, but the model of PA suffers from these closed data streams and software products. Initial sensors, data processing and controlled implementations were constructed and sold as monolithic application. An exchange of hard- or software as well as of data was not planned. The design was focused on functionality in a fixed surrounding and conceived as being a unit. This has been identified as a disadvantage for ongoing developments and the creation of added value. Influences from the outside that may be innovative or even inspired cannot be considered. To make this possible, the underlying infrastructure must be flexible and optimized for the exchange of data. This thesis explores the necessary data handling, in terms of integrating knowledge of other domains with a focus on the geo-spatial data processing. As PA is largely dependent on geographical data, this work develops spatial data infrastructure (SDI) components and is based on the methods and tools of geo-informatics. An SDI provides concepts for the organization of geospatial components. It consists of spatial- and metadata in geospatial workflows. The SDI in the center of these workflows is implemented by technologies, policies, arrangements, and interfaces to make the data accessible for various users. Data exchange is the major aim of the concept. As previously stated, data exchange is necessary for PA operations, and it can benefit from defined components of an SDI. Furthermore, PA-processes gain access to interchange with other domains. The import of additional, external data is a benefit. Simultaneously, an export interface for agricultural data offers new possibilities. Coordinated communication ensures understanding for each participant. From the technological point of view, standardized interfaces are best practice. This work demonstrates the benefit of a standardized data exchange for PA, by using the standards of the Open Geospatial Consortium (OGC). The OGC develops and publishes a wide range of relevant standards, which are widely adopted in geospatially enabled software. They are practically proven in other domains and were implemented partially in FMIS in the recent years. Depending on their focus, they could support software solutions by incorporating additional information for humans or machines into additional logics and algorithms. This work demonstrates the benefits of standardized data exchange for PA, especially by the standards of the OGC. The process of research follows five objectives: (i) to increase the usability of PA-tools in order to open the technology for a wider group of users, (ii) to include external data and services seamlessly through standardized interfaces to PA-applications, (iii) to support exchange with other domains concerning data and technology, (iv) to create a modern PA-software architecture, which allows new players and known brands to support processes in PA and to develop new business segments, (v) to use IT-technologies as a driver for agriculture and to contribute to the digitalization of agriculture.Precision agriculture (PA) ist die technische Antwort, um heterogenen Bedingungen in einem Feld zu begegnen. Es arbeitet mit teilflĂ€chenspezifischen Handlungen kleinrĂ€umig und ist durch Daten angetrieben. Das Ziel ist die optimierte landwirtschaftliche Feldanwendung, welche an die lokalen Gegebenheiten angepasst wird. Die BedĂŒrfnisse unterscheiden sich innerhalb einer Anwendung in den rĂ€umlichen Bedingungen. Ein Feld, als gleichmĂ€ĂŸig bepflanzte Einheit, ĂŒberschreitet in seiner GrĂ¶ĂŸe die rĂ€umlichen Einheiten verschiedener landschaftsökologischer GrĂ¶ĂŸen, wie den Bodentyp, die Hangneigung, den Feuchtigkeitsgehalt, die Sonneneinstrahlung etc. Unterschiedliche Sensoren sammeln Daten zu den heterogenen Bedingungen im Feld. PA-Software und farm management information systems (FMIS) ĂŒberfĂŒhren die Daten in Statusinformationen oder Bearbeitungsanweisungen, die fĂŒr die Bedingungen am Ort optimiert sind. Ausgangspunkt dieser Dissertation war die Feststellung, dass der Prozess innerhalb von PA sich nur in einer individuellen Umgebung abspielte, ohne dass es einen Austausch zwischen verschiedenen Nutzern oder anderen DomĂ€nen gab. Daten wurden gezielt fĂŒr Anwendungen gesammelt, aber das Modell von PA leidet unter diesen geschlossenen Datenströmen und Softwareprodukten. UrsprĂŒnglich wurden Sensoren, die Datenverarbeitung und die Steuerung von AnbaugerĂ€ten konstruiert und als monolithische Anwendung verkauft. Ein Austausch von Hard- und Software war ebenso nicht vorgesehen wie der von Daten. Das Design war auf Funktionen in einer festen Umgebung ausgerichtet und als eine Einheit konzipiert. Dieses zeigte sich als Nachteil fĂŒr weitere Entwicklungen und bei der Erzeugung von Mehrwerten. Äußere innovative oder inspirierende EinflĂŒsse können nicht berĂŒcksichtigt werden. Um dieses zu ermöglichen muss die darunterliegende Infrastruktur flexibel und auf einen Austausch von Daten optimiert sein. Diese Dissertation erkundet die notwendige Datenverarbeitung im Sinne der Integration von Wissen aus anderen Bereichen mit dem Fokus auf der Verarbeitung von Geodaten. Da PA sehr abhĂ€ngig von geographischen Daten ist, werden in dieser Arbeit die Bausteine einer Geodateninfrastruktur (GDI) entwickelt, die auf den Methoden undWerkzeugen der Geoinformatik beruhen. Eine GDI stellt Konzepte zur Organisation rĂ€umlicher Komponenten. Sie besteht aus Geodaten und Metadaten in raumbezogenen Arbeitsprozessen. Die GDI, als Zentrum dieser Arbeitsprozesse, wird mit Technologien, Richtlinien, Regelungen sowie Schnittstellen, die den Zugriff durch unterschiedliche Nutzer ermöglichen, umgesetzt. Datenaustausch ist das Hauptziel des Konzeptes. Wie bereits erwĂ€hnt, ist der Datenaustausch wichtig fĂŒr PA-TĂ€tigkeiten und er kann von den definierten Komponenten einer GDI profitieren. Ferner bereichert der Austausch mit anderen Gebieten die PA-Prozesse. Der Import zusĂ€tzlicher Daten ist daher ein Gewinn. Gleichzeitig bietet eine Export-Schnittstelle fĂŒr landwirtschaftliche Daten neue Möglichkeiten. Koordinierte Kommunikation sichert das VerstĂ€ndnis fĂŒr jeden Teilnehmer. Aus technischer Sicht sind standardisierte Schnittstellen die beste Lösung. Diese Arbeit zeigt den Gewinn durch einen standardisierten Datenaustausch fĂŒr PA, indem die Standards des Open Geospatial Consortium (OGC) genutzt wurden. Der OGC entwickelt und publiziert eine Vielzahl von relevanten Standards, die eine große Reichweite in Geo-Software haben. Sie haben sich in der Praxis anderer Bereiche bewĂ€hrt und wurden in den letzten Jahren teilweise in FMIS eingesetzt. AbhĂ€ngig von ihrer Ausrichtung könnten sie Softwarelösungen unterstĂŒtzen, indem sie zusĂ€tzliche Informationen fĂŒr Menschen oder Maschinen in zusĂ€tzlicher Logik oder Algorithmen integrieren. Diese Arbeit zeigt die VorzĂŒge eines standardisierten Datenaustauschs fĂŒr PA, insbesondere durch die Standards des OGC. Die Ziele der Forschung waren: (i) die Nutzbarkeit von PA-Werkzeugen zu erhöhen und damit die Technologie einer breiteren Gruppe von Anwendern verfĂŒgbar zu machen, (ii) externe Daten und Dienste ohne Unterbrechung sowie ĂŒber standardisierte Schnittstellen fĂŒr PA-Anwendungen einzubeziehen, (iii) den Austausch mit anderen Bereichen im Bezug auf Daten und Technologien zu unterstĂŒtzen, (iv) eine moderne PA-Softwarearchitektur zu erschaffen, die es neuen Teilnehmern und bekannten Marken ermöglicht, Prozesse in PA zu unterstĂŒtzen und neue GeschĂ€ftsfelder zu entwickeln, (v) IT-Technologien als Antrieb fĂŒr die Landwirtschaft zu nutzen und einen Beitrag zur Digitalisierung der Landwirtschaft zu leisten

    Optimizing precision agricultural operations by standardized cloud-based functions

    Get PDF
    Aim of study: An approach to integrate knowledge into the IT-infrastructure of precision agriculture (PA) is presented. The creation of operation relevant information is analyzed and explored to be processed by standardized web services and thereby to integrate external knowledge into PA. The target is to make knowledge integrable into any software solution. Area of study: The data sampling took place at the Heidfeld Hof Research Station in Stuttgart, Germany. Material and methods: This study follows the information science’s idea to separate the process from data sampling into the final actuation through four steps: data, information, knowledge, and wisdom. The process from the data acquisition, over a professional data treatment to the actual application is analyzed by methods modelled in the Unified Modelling Language (UML) for two use-cases. It was further applied for a low altitude sensor in a PA operation; a data sampling by UAV represents the starting point. Main results: For the implemented solution, the Web Processing Service (WPS) of the Open Geospatial Consortium (OGC) is proposed. This approach reflects the idea of a function as a service (FaaS), in order to develop a demand-driven and extensible solution for irregularly used functionalities. PA benefits, as on-farm processes are season oriented and a FaaS reflects the farm’s variable demands over time by origin and extends the concept to offer external know-how for the integration into specific processes. Research highlights: The standardized implementation of knowledge into PA software products helps to generate additional benefits for PA

    A Sensor Web-Enabled Infrastructure for Precision Farming

    No full text
    The use of sensor technologies is standard practice in the domain of precision farming. The variety of vendor-specific sensor systems, control units and processing software has led to increasing efforts in establishing interoperable sensor networks and standardized sensor data infrastructures. This study utilizes open source software and adapts the standards of the Open Geospatial Consortium to introduce a method for the realization of a sensor data infrastructure for precision farming applications. The infrastructure covers the control of sensor systems, the access to sensor data, the transmission of sensor data to web services and the standardized storage of sensor data in a sensor web-enabled server. It permits end users and computer systems to access the sensor data in a well-defined way and to build applications on top of the sensor web services. The infrastructure is scalable to large scenarios, where a multitude of sensor systems and sensor web services are involved. A real-world field trial was set-up to prove the applicability of the infrastructure

    The Nature of Sorghum Halepense (L.) Pers. Spatial Distribution Patterns in Tomato Cropping Fields

    No full text
    Spatial distribution of Sorghum halepense (L.) Pers. populations was assessed in tomato cropping fields in a total of 11 commercial fields (93 ha). Weed infestation was visually assessed from the cabin of a tractor after harvesting, using a three category ranking, ‘high’, ‘low’, and ‘no presence’, through infestation maps. Crop management factors as well as intrinsic parameters of patches were collected and calculated. The proportion of the field infested with low and high S. halepense densities, patch anisotropy, the effect of field borders and field topography were studied. On average, 5 and 3% of the surveyed area was infested with high and low densities, respectively. The majority of patches were of small size and most of the infested area was concentrated in a few large patches with irregular shape. Small patches, those with less than 50 m2 , represented 70% of the total number of detected patches. However, they only accounted for the 3% of infested area. Tillage operations showed a great influence on patch shape, producing patches twice longer in the direction of tillage than perpendicular to tillage. This result revealed the influence of human operations in S. halepense spreading. The effect of edges also had a great influence in patch expansion. Patches in contact with a field border were almost five times longer than their width in the direction of tillage. Also, the effect of borders stimulated the infestation. Areas closer to the borders had a higher risk of S. halepense infestation than zones in the center of the fields. In addition, patches tended to increase complexity the bigger they became, with a progressive shrinkage in the ratio area/perimeter2 . The influence of location within the field revealed that higher levels of infestation were found on the lowest and closest areas to riverbeds, in areas with flooding risk. Characterizing the location of S. halepense patches after harvesting offers a precise and cheap method for the construction of weed maps, which can be used for sitespecific treatments and description of weed spatial biology.This research was funded by the Foundation Alfonso Martín Escudero.Peer reviewe
    corecore